Source code for xrspatial.focal

import copy
from functools import partial
from math import isnan, sqrt

import dask.array as da
import numba as nb
import numpy as np
import pandas as pd
import xarray as xr
from numba import cuda, prange
from xarray import DataArray

try:
    import cupy
except ImportError:
    class cupy(object):
        ndarray = False

from xrspatial.convolution import convolve_2d, custom_kernel
from xrspatial.utils import ArrayTypeFunctionMapping, cuda_args, ngjit, not_implemented_func

# TODO: Make convolution more generic with numba first-class functions.


@ngjit
def _equal_numpy(x, y):
    if x == y or (np.isnan(x) and np.isnan(y)):
        return True
    return False


@ngjit
def _mean_numpy(data, excludes):
    out = np.zeros_like(data)
    rows, cols = data.shape

    for y in range(rows):
        for x in range(cols):

            exclude = False
            for ex in excludes:
                if _equal_numpy(data[y, x], ex):
                    exclude = True
                    break

            if not exclude:
                left = max(x-1, 0)
                right = min(x+2, cols)
                bottom = max(y-1, 0)
                top = min(y+2, rows)
                kernel_data = data[bottom:top, left:right]
                out[y, x] = np.nanmean(kernel_data)
            else:
                out[y, x] = data[y, x]
    return out


def _mean_dask_numpy(data, excludes):
    _func = partial(_mean_numpy, excludes=excludes)
    out = data.map_overlap(_func,
                           depth=(1, 1),
                           boundary=np.nan,
                           meta=np.array(()))
    return out


@cuda.jit
def _mean_gpu(data, excludes, out):
    i, j = cuda.grid(2)

    for ex in excludes:
        if (data[i, j] == ex) or (isnan(data[i, j]) and isnan(ex)):
            out[i, j] = data[i, j]
            return

    rows, cols = out.shape
    if 0 <= i < rows and 0 <= j < cols:
        left = max(j - 1, 0)
        right = min(j + 2, cols)
        bottom = max(i - 1, 0)
        top = min(i + 2, rows)

        sum = 0
        num = 0
        for y in range(bottom, top):
            for x in range(left, right):
                if not isnan(data[y, x]):
                    sum += data[y, x]
                    num += 1
        if num > 0:
            out[i, j] = sum / num


def _mean_cupy(data, excludes):
    griddim, blockdim = cuda_args(data.shape)
    out = cupy.empty(data.shape, dtype='f4')
    out[:] = cupy.nan
    _mean_gpu[griddim, blockdim](data, cupy.asarray(excludes), out)
    return out


def _mean(data, excludes):
    agg = xr.DataArray(data)
    mapper = ArrayTypeFunctionMapping(
        numpy_func=_mean_numpy,
        cupy_func=_mean_cupy,
        dask_func=_mean_dask_numpy,
        dask_cupy_func=lambda *args: not_implemented_func(
            *args, messages='mean() does not support dask with cupy backed DataArray.'),  # noqa
    )
    out = mapper(agg)(agg.data, excludes)
    return out


[docs]def mean(agg, passes=1, excludes=[np.nan], name='mean'): """ Returns Mean filtered array using a 3x3 window. Default behaviour to 'mean' is to exclude NaNs from calculations. Parameters ---------- agg : xarray.DataArray 2D array of input values to be filtered. passes : int, default=1 Number of times to run mean. name : str, default='mean' Output xr.DataArray.name property. Returns ------- mean_agg : xarray.DataArray of same type as `agg` 2D aggregate array of filtered values. Examples -------- Focal mean works with NumPy backed xarray DataArray .. sourcecode:: python >>> import numpy as np >>> import xarray as xr >>> from xrspatial.focal import mean >>> data = np.array([ [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 9., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) >>> raster = xr.DataArray(data) >>> mean_agg = mean(raster) >>> print(mean_agg) <xarray.DataArray 'mean' (dim_0: 5, dim_1: 5)> array([[0., 0., 0., 0., 0.], [0., 1., 1., 1., 0.], [0., 1., 1., 1., 0.], [0., 1., 1., 1., 0.], [0., 0., 0., 0., 0.]]) Dimensions without coordinates: dim_0, dim_1 Focal mean works with Dask with NumPy backed xarray DataArray. Increase number of runs by setting a specific value for parameter `passes` .. sourcecode:: python >>> import dask.array as da >>> data_da = da.from_array(data, chunks=(3, 3)) >>> raster_da = xr.DataArray(data_da, dims=['y', 'x'], name='raster_da') # noqa >>> print(raster_da) <xarray.DataArray 'raster_da' (y: 5, x: 5)> dask.array<array, shape=(5, 5), dtype=int64, chunksize=(3, 3), chunktype=numpy.ndarray> # noqa Dimensions without coordinates: y, x >>> mean_da = mean(raster_da, passes=2) >>> print(mean_da) <xarray.DataArray 'mean' (y: 5, x: 5)> dask.array<_trim, shape=(5, 5), dtype=float64, chunksize=(3, 3), chunktype=numpy.ndarray> # noqa Dimensions without coordinates: y, x >>> print(mean_da.compute()) <xarray.DataArray 'mean' (y: 5, x: 5)> array([[0.25 , 0.33333333, 0.5 , 0.33333333, 0.25 ], [0.33333333, 0.44444444, 0.66666667, 0.44444444, 0.33333333], [0.5 , 0.66666667, 1. , 0.66666667, 0.5 ], [0.33333333, 0.44444444, 0.66666667, 0.44444444, 0.33333333], [0.25 , 0.33333333, 0.5 , 0.33333333, 0.25 ]]) Dimensions without coordinates: y, x Focal mean works with CuPy backed xarray DataArray. In this example, we set `passes` to the number of elements of the array, we'll get a mean array where every element has the same value. .. sourcecode:: python >>> import cupy >>> raster_cupy = xr.DataArray(cupy.asarray(data), name='raster_cupy') >>> mean_cupy = mean(raster_cupy, passes=25) >>> print(type(mean_cupy.data)) <class 'cupy.core.core.ndarray'> >>> print(mean_cupy) <xarray.DataArray 'mean' (dim_0: 5, dim_1: 5)> array([[0.47928995, 0.47928995, 0.47928995, 0.47928995, 0.47928995], [0.47928995, 0.47928995, 0.47928995, 0.47928995, 0.47928995], [0.47928995, 0.47928995, 0.47928995, 0.47928995, 0.47928995], [0.47928995, 0.47928995, 0.47928995, 0.47928995, 0.47928995], [0.47928995, 0.47928995, 0.47928995, 0.47928995, 0.47928995]]) Dimensions without coordinates: dim_0, dim_1 """ out = agg.data.astype(float) for i in range(passes): out = _mean(out, tuple(excludes)) return DataArray(out, name=name, dims=agg.dims, coords=agg.coords, attrs=agg.attrs)
@ngjit def _calc_mean(array): return np.nanmean(array) @ngjit def _calc_sum(array): return np.nansum(array) @ngjit def _calc_min(array): return np.nanmin(array) @ngjit def _calc_max(array): return np.nanmax(array) @ngjit def _calc_std(array): return np.nanstd(array) @ngjit def _calc_range(array): value_min = _calc_min(array) value_max = _calc_max(array) return value_max - value_min @ngjit def _calc_var(array): return np.nanvar(array) @ngjit def _apply_numpy(data, kernel, func): data = data.astype(np.float32) out = np.zeros_like(data) rows, cols = data.shape krows, kcols = kernel.shape hrows, hcols = int(krows / 2), int(kcols / 2) kernel_values = np.zeros_like(kernel, dtype=data.dtype) for y in prange(rows): for x in prange(cols): # kernel values are all nans at the beginning of each step kernel_values.fill(np.nan) for ky in range(y - hrows, y + hrows + 1): for kx in range(x - hcols, x + hcols + 1): if ky >= 0 and ky < rows and kx >= 0 and kx < cols: kyidx, kxidx = ky - (y - hrows), kx - (x - hcols) if kernel[kyidx, kxidx] == 1: kernel_values[kyidx, kxidx] = data[ky, kx] out[y, x] = func(kernel_values) return out def _apply_dask_numpy(data, kernel, func): data = data.astype(np.float32) _func = partial(_apply_numpy, kernel=kernel, func=func) pad_h = kernel.shape[0] // 2 pad_w = kernel.shape[1] // 2 out = data.map_overlap(_func, depth=(pad_h, pad_w), boundary=np.nan, meta=np.array(())) return out
[docs]def apply(raster, kernel, func=_calc_mean, name='focal_apply'): """ Returns custom function applied array using a user-created window. Parameters ---------- raster : xarray.DataArray 2D array of input values to be filtered. Can be a NumPy backed, or Dask with NumPy backed DataArray. kernel : numpy.ndarray 2D array where values of 1 indicate the kernel. func : callable, default=xrspatial.focal._calc_mean Function which takes an input array and returns an array. Returns ------- agg : xarray.DataArray of same type as `raster` 2D aggregate array of filtered values. Examples -------- Focal apply works with NumPy backed xarray DataArray .. sourcecode:: python >>> import numpy as np >>> import xarray as xr >>> from xrspatial.convolution import circle_kernel >>> from xrspatial.focal import apply >>> data = np.arange(20, dtype=np.float64).reshape(4, 5) >>> raster = xr.DataArray(data, dims=['y', 'x'], name='raster') >>> print(raster) <xarray.DataArray 'raster' (y: 4, x: 5)> array([[ 0., 1., 2., 3., 4.], [ 5., 6., 7., 8., 9.], [10., 11., 12., 13., 14.], [15., 16., 17., 18., 19.]]) Dimensions without coordinates: y, x >>> kernel = circle_kernel(2, 2, 3) >>> kernel array([[0., 1., 0.], [1., 1., 1.], [0., 1., 0.]]) >>> # apply kernel mean by default >>> apply_mean_agg = apply(raster, kernel) >>> apply_mean_agg <xarray.DataArray 'focal_apply' (y: 4, x: 5)> array([[ 2. , 2.25 , 3.25 , 4.25 , 5.33333333], [ 5.25 , 6. , 7. , 8. , 8.75 ], [10.25 , 11. , 12. , 13. , 13.75 ], [13.66666667, 14.75 , 15.75 , 16.75 , 17. ]]) Dimensions without coordinates: y, x Focal apply works with Dask with NumPy backed xarray DataArray. Note that if input raster is a numpy or dask with numpy backed data array, the applied function must be decorated with ``numba.jit`` xrspatial already provides ``ngjit`` decorator, where: ``ngjit = numba.jit(nopython=True, nogil=True)`` .. sourcecode:: python >>> from xrspatial.utils import ngjit >>> from xrspatial.convolution import custom_kernel >>> kernel = custom_kernel(np.array([ [0, 1, 0], [0, 1, 1], [0, 1, 0], ])) >>> weight = np.array([ [0, 0.5, 0], [0, 1, 0.5], [0, 0.5, 0], ]) >>> @ngjit >>> def func(kernel_data): ... weight = np.array([ ... [0, 0.5, 0], ... [0, 1, 0.5], ... [0, 0.5, 0], ... ]) ... return np.nansum(kernel_data * weight) >>> import dask.array as da >>> data_da = da.from_array(np.ones((6, 4), dtype=np.float64), chunks=(3, 2)) >>> raster_da = xr.DataArray(data_da, dims=['y', 'x'], name='raster_da') >>> print(raster_da) <xarray.DataArray 'raster_da' (y: 6, x: 4)> dask.array<array, shape=(6, 4), dtype=float64, chunksize=(3, 2), chunktype=numpy.ndarray> # noqa Dimensions without coordinates: y, x >>> apply_func_agg = apply(raster_da, kernel, func) >>> print(apply_func_agg) <xarray.DataArray 'focal_apply' (y: 6, x: 4)> dask.array<_trim, shape=(6, 4), dtype=float64, chunksize=(3, 2), chunktype=numpy.ndarray> # noqa Dimensions without coordinates: y, x >>> print(apply_func_agg.compute()) <xarray.DataArray 'focal_apply' (y: 6, x: 4)> array([[2. , 2. , 2. , 1.5], [2.5, 2.5, 2.5, 2. ], [2.5, 2.5, 2.5, 2. ], [2.5, 2.5, 2.5, 2. ], [2.5, 2.5, 2.5, 2. ], [2. , 2. , 2. , 1.5]]) Dimensions without coordinates: y, x """ # validate raster if not isinstance(raster, DataArray): raise TypeError("`raster` must be instance of DataArray") if raster.ndim != 2: raise ValueError("`raster` must be 2D") # Validate the kernel kernel = custom_kernel(kernel) # apply kernel to raster values # if raster is a numpy or dask with numpy backed data array, # the function func must be a @ngjit mapper = ArrayTypeFunctionMapping( numpy_func=_apply_numpy, cupy_func=lambda *args: not_implemented_func( *args, messages='apply() does not support cupy backed DataArray.'), dask_func=_apply_dask_numpy, dask_cupy_func=lambda *args: not_implemented_func( *args, messages='apply() does not support dask with cupy backed DataArray.'), ) out = mapper(raster)(raster.data, kernel, func) result = DataArray(out, name=name, coords=raster.coords, dims=raster.dims, attrs=raster.attrs) return result
@cuda.jit def _focal_min_cuda(data, kernel, out): i, j = cuda.grid(2) delta_rows = kernel.shape[0] // 2 delta_cols = kernel.shape[1] // 2 data_rows, data_cols = data.shape if i < delta_rows or i >= data_rows - delta_rows or \ j < delta_cols or j >= data_cols - delta_cols: return s = data[i, j] for k in range(kernel.shape[0]): for h in range(kernel.shape[1]): i_k = i + k - delta_rows j_h = j + h - delta_cols if (i_k >= 0) and (i_k < data_rows) and (j_h >= 0) and (j_h < data_cols): if (kernel[k, h] != 0) and s > data[i_k, j_h]: s = data[i_k, j_h] out[i, j] = s @cuda.jit def _focal_max_cuda(data, kernel, out): i, j = cuda.grid(2) delta_rows = kernel.shape[0] // 2 delta_cols = kernel.shape[1] // 2 data_rows, data_cols = data.shape if i < delta_rows or i >= data_rows - delta_rows or \ j < delta_cols or j >= data_cols - delta_cols: return s = data[i, j] for k in range(kernel.shape[0]): for h in range(kernel.shape[1]): i_k = i + k - delta_rows j_h = j + h - delta_cols if (i_k >= 0) and (i_k < data_rows) and (j_h >= 0) and (j_h < data_cols): if (kernel[k, h] != 0) and s < data[i_k, j_h]: s = data[i_k, j_h] out[i, j] = s def _focal_range_cupy(data, kernel): focal_min = _focal_stats_func_cupy(data, kernel, _focal_min_cuda) focal_max = _focal_stats_func_cupy(data, kernel, _focal_max_cuda) out = focal_max - focal_min return out @cuda.jit def _focal_std_cuda(data, kernel, out): i, j = cuda.grid(2) delta_rows = kernel.shape[0] // 2 delta_cols = kernel.shape[1] // 2 data_rows, data_cols = data.shape if i < delta_rows or i >= data_rows - delta_rows or \ j < delta_cols or j >= data_cols - delta_cols: return sum_squares = 0 sum = 0 count = 0 for k in range(kernel.shape[0]): for h in range(kernel.shape[1]): i_k = i + k - delta_rows j_h = j + h - delta_cols if (i_k >= 0) and (i_k < data_rows) and (j_h >= 0) and (j_h < data_cols): sum_squares += (kernel[k, h]*data[i_k, j_h])**2 sum += kernel[k, h]*data[i_k, j_h] count += kernel[k, h] squared_sum = sum**2 out[i, j] = sqrt((sum_squares - squared_sum/count) / count) @cuda.jit def _focal_var_cuda(data, kernel, out): i, j = cuda.grid(2) delta_rows = kernel.shape[0] // 2 delta_cols = kernel.shape[1] // 2 data_rows, data_cols = data.shape if i < delta_rows or i >= data_rows - delta_rows or \ j < delta_cols or j >= data_cols - delta_cols: return sum_squares = 0 sum = 0 count = 0 for k in range(kernel.shape[0]): for h in range(kernel.shape[1]): i_k = i + k - delta_rows j_h = j + h - delta_cols if (i_k >= 0) and (i_k < data_rows) and (j_h >= 0) and (j_h < data_cols): sum_squares += (kernel[k, h]*data[i_k, j_h])**2 sum += kernel[k, h]*data[i_k, j_h] count += kernel[k, h] squared_sum = sum**2 out[i, j] = (sum_squares - squared_sum/count) / count def _focal_mean_cupy(data, kernel): out = convolve_2d(data, kernel / kernel.sum()) return out def _focal_sum_cupy(data, kernel): out = convolve_2d(data, kernel) return out def _focal_stats_func_cupy(data, kernel, func=_focal_max_cuda): out = cupy.empty(data.shape, dtype='f4') out[:, :] = cupy.nan griddim, blockdim = cuda_args(data.shape) func[griddim, blockdim](data, kernel, cupy.asarray(out)) return out def _focal_stats_cupy(agg, kernel, stats_funcs): _stats_cupy_mapper = dict( mean=_focal_mean_cupy, sum=_focal_sum_cupy, range=_focal_range_cupy, max=lambda *args: _focal_stats_func_cupy(*args, func=_focal_max_cuda), min=lambda *args: _focal_stats_func_cupy(*args, func=_focal_min_cuda), std=lambda *args: _focal_stats_func_cupy(*args, func=_focal_std_cuda), var=lambda *args: _focal_stats_func_cupy(*args, func=_focal_var_cuda), ) stats_aggs = [] for stats in stats_funcs: data = agg.data.astype(cupy.float32) stats_data = _stats_cupy_mapper[stats](data, kernel) stats_agg = xr.DataArray( stats_data, dims=agg.dims, coords=agg.coords, attrs=agg.attrs ) stats_aggs.append(stats_agg) stats = xr.concat(stats_aggs, pd.Index(stats_funcs, name='stats')) return stats def _focal_stats_cpu(agg, kernel, stats_funcs): _function_mapping = { 'mean': _calc_mean, 'max': _calc_max, 'min': _calc_min, 'range': _calc_range, 'std': _calc_std, 'var': _calc_var, 'sum': _calc_sum } stats_aggs = [] for stats in stats_funcs: stats_agg = apply(agg, kernel, func=_function_mapping[stats]) stats_aggs.append(stats_agg) stats = xr.concat(stats_aggs, pd.Index(stats_funcs, name='stats')) return stats
[docs]def focal_stats(agg, kernel, stats_funcs=[ 'mean', 'max', 'min', 'range', 'std', 'var', 'sum' ]): """ Calculates statistics of the values within a specified focal neighborhood for each pixel in an input raster. The statistics types are Mean, Maximum, Minimum, Range, Standard deviation, Variation and Sum. Parameters ---------- agg : xarray.DataArray 2D array of input values to be analysed. Can be a NumPy backed, Cupy backed, or Dask with NumPy backed DataArray. kernel : numpy.array 2D array where values of 1 indicate the kernel. stats_funcs: list of string List of statistics types to be calculated. Default set to ['mean', 'max', 'min', 'range', 'std', 'var', 'sum']. Returns ------- stats_agg : xarray.DataArray of same type as `agg` 3D array with dimensions of `(stat, y, x)` and with values indicating the focal stats. Examples -------- .. sourcecode:: python >>> import numpy as np >>> import xarray as xr >>> from xrspatial.convolution import circle_kernel >>> kernel = circle_kernel(1, 1, 1) >>> kernel array([[0., 1., 0.], [1., 1., 1.], [0., 1., 0.]]) >>> data = np.array([ [0, 0, 0, 0, 0, 0], [1, 1, 2, 2, 1, 1], [2, 2, 1, 1, 2, 2], [3, 3, 0, 0, 3, 3], ]) >>> from xrspatial.focal import focal_stats >>> focal_stats(xr.DataArray(data), kernel, stats_funcs=['min', 'sum']) <xarray.DataArray 'focal_apply' (stats: 2, dim_0: 4, dim_1: 6)> array([[[0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0.], [1., 1., 0., 0., 1., 1.], [2., 0., 0., 0., 0., 2.]], [[1., 1., 2., 2., 1., 1.], [4., 6., 6., 6., 6., 4.], [8., 9., 6., 6., 9., 8.], [8., 8., 4., 4., 8., 8.]]]) Coordinates: * stats (stats) object 'min' 'sum' Dimensions without coordinates: dim_0, dim_1 """ # validate raster if not isinstance(agg, DataArray): raise TypeError("`agg` must be instance of DataArray") if agg.ndim != 2: raise ValueError("`agg` must be 2D") # Validate the kernel kernel = custom_kernel(kernel) mapper = ArrayTypeFunctionMapping( numpy_func=_focal_stats_cpu, cupy_func=_focal_stats_cupy, dask_func=_focal_stats_cpu, dask_cupy_func=lambda *args: not_implemented_func( *args, messages='focal_stats() does not support dask with cupy backed DataArray.'), ) result = mapper(agg)(agg, kernel, stats_funcs) return result
@ngjit def _calc_hotspots_numpy(z_array): out = np.zeros_like(z_array, dtype=np.int8) rows, cols = z_array.shape for y in prange(rows): for x in prange(cols): zscore = z_array[y, x] # find p value p_value = 1.0 if abs(zscore) >= 2.33: p_value = 0.0099 elif abs(zscore) >= 1.65: p_value = 0.0495 elif abs(zscore) >= 1.29: p_value = 0.0985 # confidence confidence = 0 if abs(zscore) > 2.58 and p_value < 0.01: confidence = 99 elif abs(zscore) > 1.96 and p_value < 0.05: confidence = 95 elif abs(zscore) > 1.65 and p_value < 0.1: confidence = 90 hot_cold = 0 if zscore > 0: hot_cold = 1 elif zscore < 0: hot_cold = -1 out[y, x] = hot_cold * confidence return out def _hotspots_numpy(raster, kernel): if not (issubclass(raster.data.dtype.type, np.integer) or issubclass(raster.data.dtype.type, np.floating)): raise ValueError("data type must be integer or float") data = raster.data.astype(np.float32) # apply kernel to raster values mean_array = convolve_2d(data, kernel / kernel.sum()) # calculate z-scores global_mean = np.nanmean(data) global_std = np.nanstd(data) if global_std == 0: raise ZeroDivisionError( "Standard deviation of the input raster values is 0." ) z_array = (mean_array - global_mean) / global_std out = _calc_hotspots_numpy(z_array) return out def _hotspots_dask_numpy(raster, kernel): data = raster.data.astype(np.float32) # apply kernel to raster values mean_array = convolve_2d(data, kernel / kernel.sum()) # calculate z-scores global_mean = da.nanmean(data) global_std = da.nanstd(data) # commented out to avoid early compute to check if global_std is zero # if global_std == 0: # raise ZeroDivisionError( # "Standard deviation of the input raster values is 0." # ) z_array = (mean_array - global_mean) / global_std _func = partial(_calc_hotspots_numpy) pad_h = kernel.shape[0] // 2 pad_w = kernel.shape[1] // 2 out = z_array.map_overlap(_func, depth=(pad_h, pad_w), boundary=np.nan, meta=np.array(())) return out @nb.cuda.jit(device=True) def _gpu_hotspots(data): zscore = data[0, 0] # find p value p_value = 1.0 if abs(zscore) >= 2.33: p_value = 0.0099 elif abs(zscore) >= 1.65: p_value = 0.0495 elif abs(zscore) >= 1.29: p_value = 0.0985 # confidence confidence = 0 if abs(zscore) > 2.58 and p_value < 0.01: confidence = 99 elif abs(zscore) > 1.96 and p_value < 0.05: confidence = 95 elif abs(zscore) > 1.65 and p_value < 0.1: confidence = 90 hot_cold = 0 if zscore > 0: hot_cold = 1 elif zscore < 0: hot_cold = -1 return hot_cold * confidence @nb.cuda.jit def _run_gpu_hotspots(data, out): i, j = nb.cuda.grid(2) if i >= 0 and i < out.shape[0] and j >= 0 and j < out.shape[1]: out[i, j] = _gpu_hotspots(data[i:i + 1, j:j + 1]) def _hotspots_cupy(raster, kernel): if not (issubclass(raster.data.dtype.type, cupy.integer) or issubclass(raster.data.dtype.type, cupy.floating)): raise ValueError("data type must be integer or float") data = raster.data.astype(cupy.float32) # apply kernel to raster values mean_array = convolve_2d(data, kernel / kernel.sum()) # calculate z-scores global_mean = cupy.nanmean(data) global_std = cupy.nanstd(data) if global_std == 0: raise ZeroDivisionError( "Standard deviation of the input raster values is 0." ) z_array = (mean_array - global_mean) / global_std out = cupy.zeros_like(z_array, dtype=cupy.int8) griddim, blockdim = cuda_args(z_array.shape) _run_gpu_hotspots[griddim, blockdim](z_array, out) return out
[docs]def hotspots(raster, kernel): """ Identify statistically significant hot spots and cold spots in an input raster. To be a statistically significant hot spot, a feature will have a high value and be surrounded by other features with high values as well. Neighborhood of a feature defined by the input kernel, which currently support a shape of circle, annulus, or custom kernel. The result should be a raster with the following 7 values: - 90 for 90% confidence high value cluster - 95 for 95% confidence high value cluster - 99 for 99% confidence high value cluster - 90 for 90% confidence low value cluster - 95 for 95% confidence low value cluster - 99 for 99% confidence low value cluster - 0 for no significance Parameters ---------- raster : xarray.DataArray 2D Input raster image with `raster.shape` = (height, width). Can be a NumPy backed, CuPy backed, or Dask with NumPy backed DataArray kernel : Numpy Array 2D array where values of 1 indicate the kernel. Returns ------- hotspots_agg : xarray.DataArray of same type as `raster` 2D array of hotspots with values indicating confidence level. Examples -------- .. sourcecode:: python >>> import numpy as np >>> import xarray as xr >>> from xrspatial.convolution import custom_kernel >>> kernel = custom_kernel(np.array([[1, 1, 0]])) >>> data = np.array([ ... [0, 1000, 1000, 0, 0, 0], ... [0, 0, 0, -1000, -1000, 0], ... [0, -900, -900, 0, 0, 0], ... [0, 100, 1000, 0, 0, 0]]) >>> from xrspatial.focal import hotspots >>> hotspots(xr.DataArray(data), kernel) array([[ 0, 0, 95, 0, 0, 0], [ 0, 0, 0, 0, -90, 0], [ 0, 0, -90, 0, 0, 0], [ 0, 0, 0, 0, 0, 0]], dtype=int8) Dimensions without coordinates: dim_0, dim_1 """ # validate raster if not isinstance(raster, DataArray): raise TypeError("`raster` must be instance of DataArray") if raster.ndim != 2: raise ValueError("`raster` must be 2D") mapper = ArrayTypeFunctionMapping( numpy_func=_hotspots_numpy, cupy_func=_hotspots_cupy, dask_func=_hotspots_dask_numpy, dask_cupy_func=lambda *args: not_implemented_func( *args, messages='hotspots() does not support dask with cupy backed DataArray.'), # noqa ) out = mapper(raster)(raster, kernel) attrs = copy.deepcopy(raster.attrs) attrs['unit'] = '%' return DataArray(out, coords=raster.coords, dims=raster.dims, attrs=attrs)